Каталог заданий.
Пирамида
Версия для печати и копирования в MS Word
1
Тип Д16 № 5069
i

Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.


Ответ:

2
Тип Д16 № 27069
i

Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.


Ответ:

3
Тип Д16 № 27088
i

Най­ди­те вы­со­ту пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 2, а объем равен  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .


Ответ:

4
Тип Д16 № 27109
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.


Ответ:

5
Тип Д16 № 27110
i

Ос­но­ва­ни­ем пи­ра­ми­ды слу­жит пря­мо­уголь­ник, одна бо­ко­вая грань пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния, а три дру­гие бо­ко­вые грани на­кло­не­ны к плос­ко­сти ос­но­ва­ния под углом 60°. Вы­со­та пи­ра­ми­ды равна 6. Най­ди­те объем пи­ра­ми­ды.


Ответ:

6
Тип Д16 № 27111
i

Бо­ко­вые ребра тре­уголь­ной пи­ра­ми­ды вза­им­но пер­пен­ди­ку­ляр­ны, каж­дое из них равно 3. Най­ди­те объем пи­ра­ми­ды.


Ответ:

7
Тип Д16 № 27116
i

Объем тре­уголь­ной пи­ра­ми­ды равен 15. Плос­кость про­хо­дит через сто­ро­ну ос­но­ва­ния этой пи­ра­ми­ды и пе­ре­се­ка­ет про­ти­во­по­лож­ное бо­ко­вое ребро в точке, де­ля­щей его в от­но­ше­нии 1 : 2, счи­тая от вер­ши­ны пи­ра­ми­ды. Най­ди­те боль­ший из объ­е­мов пи­ра­мид, на ко­то­рые плос­кость раз­би­ва­ет ис­ход­ную пи­ра­ми­ду.


Ответ:

8
Тип Д16 № 27155
i

Най­ди­те пло­щадь по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 6 и вы­со­та равна 4.


Ответ:

9
Тип Д16 № 27171
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 6 и вы­со­та равна 4.


Ответ:

10
Тип Д16 № 27176
i

Най­ди­те объем пи­ра­ми­ды, вы­со­та ко­то­рой равна 6, а ос­но­ва­ние  — пря­мо­уголь­ник со сто­ро­на­ми 3 и 4.


Ответ:

11
Тип Д16 № 27178
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 12, объем равен 200. Най­ди­те бо­ко­вое ребро этой пи­ра­ми­ды.


Ответ:

12
Тип Д16 № 27179
i

Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 2, бо­ко­вое ребро равно 4. Най­ди­те объем пи­ра­ми­ды.


Ответ:

13
Тип Д16 № 27180
i

Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равен 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.


Ответ:

14
Тип Д16 № 27181
i

Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 4, а угол между бо­ко­вой гра­нью и ос­но­ва­ни­ем равен 45°. Най­ди­те объем пи­ра­ми­ды.


Ответ:

15
Тип Д16 № 73945
i

Най­ди­те вы­со­ту пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 8, а объем равен 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .


Ответ:

16
Тип Д16 № 74849
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 3, бо­ко­вое ребро равно 10. Най­ди­те ее объем.


Ответ:

17
Тип Д16 № 74893
i

Ос­но­ва­ни­ем пи­ра­ми­ды слу­жит пря­мо­уголь­ник, одна бо­ко­вая грань пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния, а три дру­гие бо­ко­вые грани на­кло­не­ны к плос­ко­сти ос­но­ва­ния под углом 60°. Вы­со­та пи­ра­ми­ды равна 9. Най­ди­те объем пи­ра­ми­ды.


Ответ:

18
Тип Д16 № 76487
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 24 и вы­со­та равна 16.


Ответ:

19
Тип Д16 № 76715
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 5, объем равен 480. Най­ди­те бо­ко­вое ребро этой пи­ра­ми­ды.


Ответ:

20
Тип Д16 № 245353
i

Най­ди­те объем пи­ра­ми­ды, изоб­ра­жен­ной на ри­сун­ке. Ее ос­но­ва­ни­ем яв­ля­ет­ся мно­го­уголь­ник, со­сед­ние сто­ро­ны ко­то­ро­го пер­пен­ди­ку­ляр­ны, а одно из бо­ко­вых ребер пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния и равно 3.


Ответ:

21
Тип Д16 № 284348
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S вер­ши­на, SO  =  4, AC  =  6. Най­ди­те бо­ко­вое ребро SC.


Ответ:

22
Тип Д16 № 284349
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SC=5, AC=6. Най­ди­те длину от­рез­ка SO.


Ответ:

23
Тип Д16 № 284350
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SO=4, SC=5. Най­ди­те длину от­рез­ка AC.


Ответ:

24
Тип Д16 № 318146
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD с ос­но­ва­ни­ем ABCD бо­ко­вое ребро SA равно 5, сто­ро­на ос­но­ва­ния равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . Най­ди­те объём пи­ра­ми­ды.


Ответ:

25
Тип Д16 № 324450
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де все рёбра равны 1. Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны бо­ко­вых рёбер.


Ответ:

26
Тип Д16 № 500955
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD вы­со­та SO равна 13, диа­го­наль ос­но­ва­ния BD равна 8. Точки К и М  — се­ре­ди­ны рёбер CD и ВС со­от­вет­ствен­но. Най­ди­те тан­генс угла между плос­ко­стью SMK и плос­ко­стью ос­но­ва­ния ABC.


Ответ:

27
Тип Д16 № 501189
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD вы­со­та SO равна 13, диа­го­наль ос­но­ва­ния BD равна 8. Точки K и М  — се­ре­ди­ны ребер CD и ВС со­от­вет­ствен­но. Най­ди­те тан­генс угла между плос­ко­стью SMK и плос­ко­стью ос­но­ва­ния AВС.


Ответ:

28
Тип Д16 № 508397
i

Сто­ро­на ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равна 4, а бо­ко­вое ребро равно  ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та . Най­ди­те объем пи­ра­ми­ды.


Ответ:

29
Тип Д16 № 509088
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де бо­ко­вое ребро равно 22, а тан­генс угла между бо­ко­вой гра­нью и плос­ко­стью ос­но­ва­ния равен  ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та . Найти сто­ро­ну ос­но­ва­ния пи­ра­ми­ды.


Ответ:

30
Тип Д16 № 509117
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 5, а тан­генс угла между бо­ко­вой гра­нью и плос­ко­стью ос­но­ва­ния равен 0,25 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та . Найти сто­ро­ну ос­но­ва­ния пи­ра­ми­ды.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.