Приведите пример четырёхзначного числа, кратного 12, произведение цифр которого больше 40, но меньше 45. В ответе укажите ровно одно такое число.
Если число делится на 12, то оно делится на 3 и на 4. Если число делится на 3, то сумма всех его цифр тоже делится на 3. Если число делится на 4, то число, образованное двумя последними его цифрами тоже делится на 4. Пусть наше число имеет вид тогда условие записывается так:
В интервале находятся числа 41, 42, 43, 44. 41 и 43 — простые, а 44 делится на 11 — тоже простое. Таким образом, 41, 43 и 44 не подходят, потому что не могут быть представлены в виде произведения. То есть
Два набора цифр подходят как решение: (1, 2, 3, 7) и (1, 1, 6, 7). Но в первом наборе сумма цифр не кратна трём, так что он отпадает. Имеем (1, 1, 6, 7). Последняя цифра в числе должна быть чётной, иначе число не будет делиться на 4.
Остальные цифры могут стоять в любом порядке.
Выпишем искомые числа: 1176, 1716, 7116.


Я ввела число 3720. Оно же кратно 12, и произведение его цифр равно 42, т.е. больше 40, но меньше 45. Почему мне засчитали ошибку?
Добрый день! Произведение цифр числа 3720 равно нулю.