На шести карточках написаны цифры 2, 3, 5, 6, 7, 7 (по одной цифре на каждой карточке). В выражении
вместо каждого квадратика положили карточку из данного набора. Оказалось, что полученная сумма делится на 10, но не делится на 20. В ответе укажите какую-нибудь одну такую сумму.
Чтобы сумма делилась на 10 она должна заканчиваться на 0. Чтобы сумма не делилась на 20, вторая цифра с конца не должна быть четной. Чтобы в конце суммы получить 0, можно выбрать следующие цифры: 2, 3, 5 и 6, 7, 7. Рассмотрим каждую из двух комбинаций.
Случай 1: комбинация 2, 3, 5.
Среди оставшихся цифр 6, 7, 7 — две нечетные и одна четная. Чтобы получить вторую цифру нечетную, нужно взять две чётных цифры или две нечётных цифры (к четной сумме будет добавляться 1 от суммы цифр в 1 разряде). Тогда получаем: 2 + 73 + 675 = 750. Заметим, что последовательность последних цифр в числах никак не влияет на результат.
Случай 2: комбинация 6, 7, 7.
Среди оставшихся цифр 2, 3, 5 — две нечетные и одна четная. Чтобы получить вторую цифру нечетную, нужно взять одну четную (2) и одну нечетную цифры (3 или 5) во втором разряде (к нечетной сумме будет добавляться 2 от суммы цифр в 1 разряде). Тогда получаем: 6 + 27 + 537 = 570 и 6 + 27 + 357 = 390.
Ответ: 390, 570 или 750.

