Найдите четырёхзначное натуральное число, большее 3000, но меньшее 3200, которое делится на каждую свою цифру и все цифры которого различны. В ответе укажите какое-нибудь одно такое число.
Пусть abcd — искомое число (a — число тысяч, b — число сотен, — число десятков, d — число единиц) . По условию
Кроме того,
Проанализируем теперь то, что искомое число делится на каждую свою цифру.
Если искомое число содержит цифру 5, то эта цифра должна стоять на 4-м месте. Это просто понять из того, что признак делимости на 5 — это 0, или 5 на конце числа. Если цифра 5 будет стоять где-нибудь не на последнем месте, то тогда, согласно признаку делимости 5, еще одна 5 будет стоять в конце числа, а это противоречит условию задачи.
Первая цифра — тройка, а вторая — единица. Это очевидно из того, что искомое число больше 3000 и меньше 3200.
Если на первом месте стоит цифра 3, то сумма цифр числа должна делиться на 3. Сумма первых двух цифр: 3+1=4. Тогда сумма всех 4 цифр, которая делится на 3, может быть максимум 21. Рассмотрим варианты:
4+x+y=21 (x=8, y=9: 3189 — не подходит, так как не делится на 8, 3198 — не делится на 9)
4+x+y=18 (x+y=14: x=5,y=9 — 3195 — число делится на 3, на 9 и на 5, x=6,y=8 — 3168 — число делится на 3, на 6. на 8, x=7,y=7 — не подходит)
4+x+y=15 (x+y=11: x=2,y=9 — не подходит, x=3,y=8 — не подходит, x=4,y=7 — не подходит, x=5,y=6 — не подходит)
4+x+y=12 (x+y=8: x=7,y=1 — не подходит, x=2,y=6 — 3162, 3126 — числа делятся на каждую из своих цифр, x=3,y=5 — не подходит, x=4,y=4 — не подходит)
4+x+y=9 (x+y=5: x=4,y=1 — не подходит, x=3, y=2 — не подходит)
4+x+y=6 (x+y=2: x=1,y=1 — не подходит)
4+x+y=3 (x+y=1 — не возможно, в связи с тем, что ни одна из цифр нулю не равняется.
Ответ: 3126, 3162, 3168 и 3195.

