СДАМ ГИА






Каталог заданий. Пирамида
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

За­да­ние 13 № 901
2

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Пло­щадь тре­уголь­ни­ка равна 9; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка .

За­да­ние 13 № 902
3

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Пло­щадь тре­уголь­ни­ка равна 2; объем пи­ра­ми­ды равен 5. Най­ди­те длину от­рез­ка .

За­да­ние 13 № 903
4

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Пло­щадь тре­уголь­ни­ка равна 2; объем пи­ра­ми­ды равен 4. Най­ди­те длину от­рез­ка .

За­да­ние 13 № 904
5

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Пло­щадь тре­уголь­ни­ка равна 4; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка .

За­да­ние 13 № 905
6

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де точка – центр ос­но­ва­ния, – вер­ши­на, , . Най­ди­те бо­ко­вое ребро .

За­да­ние 13 № 911
7

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де точка – центр ос­но­ва­ния, – вер­ши­на, Най­ди­те длину от­рез­ка .

За­да­ние 13 № 912
8

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де точка – центр ос­но­ва­ния, – вер­ши­на, , . Най­ди­те бо­ко­вое ребро .

За­да­ние 13 № 913
9

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де точка — центр ос­но­ва­ния, — вер­ши­на, , . Най­ди­те длину от­рез­ка .

За­да­ние 13 № 914
10

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де точка – центр ос­но­ва­ния, – вер­ши­на, =12, =18. Най­ди­те бо­ко­вое ребро

За­да­ние 13 № 915
11

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка M – се­ре­ди­на ребра AB, S – вер­ши­на. Из­вест­но, что BC = 3, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 45. Най­ди­те длину от­рез­ка SM.

За­да­ние 13 № 920
12

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка L — се­ре­ди­на ребра AC, S — вер­ши­на. Из­вест­но, что BC = 6, а SL = 5. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

За­да­ние 13 № 921
13

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка K – се­ре­ди­на ребра BC, S – вер­ши­на. Из­вест­но, что SK = 4, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 54. Най­ди­те длину ребра AC.

За­да­ние 13 № 922
14

В пра­виль­ной тре­уголь­ной пи­ра­ми­де – се­ре­ди­на ребра , – вер­ши­на. Из­вест­но, что =5, а =6. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

За­да­ние 13 № 923
15

В пра­виль­ной тре­уголь­ной пи­ра­ми­де   – се­ре­ди­на ребра ,   – вер­ши­на. Из­вест­но, что =7, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 42. Най­ди­те длину от­рез­ка .

За­да­ние 13 № 924
16

Объем па­рал­ле­ле­пи­пе­да равен 9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

За­да­ние 13 № 27074

Аналоги к заданию № 27074: 5079

17

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

За­да­ние 13 № 27085
18

Во сколь­ко раз уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в че­ты­ре раза?

За­да­ние 13 № 27089
19

Объем тре­уголь­ной пи­ра­ми­ды , яв­ля­ю­щей­ся ча­стью пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды , равен 1. Най­ди­те объем ше­сти­уголь­ной пи­ра­ми­ды.

За­да­ние 13 № 27113
20

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 12. Точка – се­ре­ди­на ребра . Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

За­да­ние 13 № 27114
21

От тре­уголь­ной пи­ра­ми­ды, объем ко­то­рой равен 12, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через вер­ши­ну пи­ра­ми­ды и сред­нюю линию ос­но­ва­ния. Най­ди­те объем от­се­чен­ной тре­уголь­ной пи­ра­ми­ды.

За­да­ние 13 № 27115
22

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

За­да­ние 13 № 27131
23

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти ок­та­эд­ра, если все его ребра уве­ли­чить в 3 раза?

За­да­ние 13 № 27157
24

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пи­ра­ми­ды, если все ее ребра уве­ли­чить в 2 раза?

За­да­ние 13 № 27172
25

Ребра тет­ра­эд­ра равны 1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через се­ре­ди­ны че­ты­рех его ребер.

За­да­ние 13 № 27175
26

Объем па­рал­ле­ле­пи­пе­да равен 12. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды .

За­да­ние 13 № 27182
27

Объем куба равен 12. Най­ди­те объем че­ты­рех­уголь­ной пи­ра­ми­ды, ос­но­ва­ни­ем ко­то­рой яв­ля­ет­ся грань куба, а вер­ши­ной — центр куба.

За­да­ние 13 № 27184
28

Най­ди­те объем па­рал­ле­ле­пи­пе­да , если объем тре­уголь­ной пи­ра­ми­ды равен 3.

За­да­ние 13 № 77154
29

В пра­виль­ной тре­уголь­ной пи­ра­ми­де  — се­ре­ди­на ребра ,  — вер­ши­на. Из­вест­но, что , а . Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти.

За­да­ние 13 № 284351
30

В пра­виль­ной тре­уголь­ной пи­ра­ми­де  — се­ре­ди­на ребра ,  — вер­ши­на. Из­вест­но, что , а пло­щадь бо­ко­вой по­верх­но­сти равна . Най­ди­те длину от­рез­ка .

За­да­ние 13 № 284352
31

В пра­виль­ной тре­уголь­ной пи­ра­ми­де точка  — се­ре­ди­на ребра ,  — вер­ши­на. Из­вест­но, что , а пло­щадь бо­ко­вой по­верх­но­сти равна 3. Най­ди­те длину от­рез­ка .

 

За­да­ние 13 № 284353
32

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Пло­щадь тре­уголь­ни­ка равна 3, объем пи­ра­ми­ды равен 1. Най­ди­те длину от­рез­ка .

За­да­ние 13 № 284354
33

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Пло­щадь тре­уголь­ни­ка равна , . Най­ди­те объем пи­ра­ми­ды.

За­да­ние 13 № 284355
34

В пра­виль­ной тре­уголь­ной пи­ра­ми­де ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке . Объем пи­ра­ми­ды равен , . Най­ди­те пло­щадь тре­уголь­ни­ка .

За­да­ние 13 № 284356
35

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де точка − центр ос­но­ва­ния, − вер­ши­на, , Най­ди­те длину от­рез­ка

За­да­ние 13 № 500891
36

Пи­ра­ми­да Сно­фру имеет форму пра­виль­ной четырёхуголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 220 м, а вы­со­та — 104 м. Сто­ро­на ос­но­ва­ния точ­ной му­зей­ной копии этой пи­ра­ми­ды равна 44 см. Най­ди­те вы­со­ту му­зей­ной копии. Ответ дайте в сан­ти­мет­рах.

За­да­ние 13 № 506416

Аналоги к заданию № 506416: 509738



Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166082.
37

Плос­кость, про­хо­дя­щая через точки A, B и C, рас­се­ка­ет тет­ра­эдр на два мно­го­гран­ни­ка (см. ри­су­нок). Сколь­ко вер­шин у по­лу­чив­ше­го­ся мно­го­гран­ни­ка с боль­шим чис­лом гра­ней?

За­да­ние 13 № 509778


Источник: СтатГрад: Тре­ниро­воч­ная ра­бо­та по ма­те­ма­ти­ке 22.04.2015 ва­ри­ант МА10408.

Пройти тестирование по этим заданиям



     О проекте

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!
общее/сайт/предмет


Рейтинг@Mail.ru
Яндекс.Метрика