№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел Раздел кодификатора ФИПИ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Пирамида
1.

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

2.

В правильной четырехугольной пирамиде точка – центр основания, – вершина, , . Найдите боковое ребро .

3.

В правильной четырехугольной пирамиде точка – центр основания, – вершина, Найдите длину отрезка .

4.

В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.

5.

В правильной треугольной пирамиде SABC точка L — середина ребра AC, S — вершина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пирамиды.

6.

Объем па­рал­ле­ле­пи­пе­да равен 9. Най­ди­те объем тре­уголь­ной пирамиды .

7.

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тетраэдра, если все его ребра уве­ли­чить в два раза?

8.

Во сколь­ко раз уве­ли­чит­ся объем пирамиды, если ее вы­со­ту увеличить в че­ты­ре раза?

9.

Объем тре­уголь­ной пирамиды , яв­ля­ю­щей­ся частью пра­виль­ной шестиугольной пи­ра­ми­ды , равен 1. Най­ди­те объем ше­сти­уголь­ной пирамиды.

10.

Объем пра­виль­ной четырехугольной пи­ра­ми­ды равен 12. Точка – се­ре­ди­на ребра . Най­ди­те объем тре­уголь­ной пирамиды .

11.

От тре­уголь­ной пирамиды, объем ко­то­рой равен 12, от­се­че­на треугольная пи­ра­ми­да плоскостью, про­хо­дя­щей через вер­ши­ну пирамиды и сред­нюю линию основания. Най­ди­те объем от­се­чен­ной треугольной пирамиды.

12.

Во сколь­ко раз уве­ли­чит­ся площадь по­верх­но­сти правильного тетраэдра, если все его ребра уве­ли­чить в два раза?

13.

Во сколь­ко раз уве­ли­чит­ся площадь по­верх­но­сти октаэдра, если все его ребра уве­ли­чить в 3 раза?

14.

Во сколь­ко раз уве­ли­чит­ся площадь по­верх­но­сти пирамиды, если все ее ребра уве­ли­чить в 2 раза?

15.

Ребра тет­ра­эд­ра равны 1. Най­ди­те площадь сечения, про­хо­дя­ще­го через се­ре­ди­ны четырех его ребер.

16.

Объем па­рал­ле­ле­пи­пе­да равен 12. Най­ди­те объем тре­уголь­ной пирамиды .

17.

Объем куба равен 12. Най­ди­те объем че­ты­рех­уголь­ной пирамиды, ос­но­ва­ни­ем которой яв­ля­ет­ся грань куба, а вершиной — центр куба.

18.

Найдите объем па­рал­ле­ле­пи­пе­да , если объем тре­уголь­ной пирамиды равен 3.

19.

В правильной треугольной пирамиде  — середина ребра ,  — вершина. Известно, что , а . Найдите площадь боковой поверхности.

20.

В пра­виль­ной треугольной пи­ра­ми­де  — се­ре­ди­на ребра ,  — вершина. Известно, что , а пло­щадь боковой по­верх­но­сти равна . Най­ди­те длину от­рез­ка .

21.

В правильной треугольной пирамиде точка  — середина ребра ,  — вершина. Известно, что , а площадь боковой поверхности равна 3. Найдите длину отрезка .

 

22.

В правильной треугольной пирамиде медианы основания пересекаются в точке . Площадь треугольника равна 3, объем пирамиды равен 1. Найдите длину отрезка .

23.

В правильной треугольной пирамиде медианы основания пересекаются в точке . Площадь треугольника равна , . Найдите объем пирамиды.

24.

В пра­виль­ной треугольной пи­ра­ми­де ме­ди­а­ны основания пе­ре­се­ка­ют­ся в точке . Объем пи­ра­ми­ды равен , . Най­ди­те площадь тре­уголь­ни­ка .