Задания
Версия для печати и копирования в MS Word
Тип 11 № 506516
i

В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби вы­со­ты. Объём жид­ко­сти равен 10 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы на­пол­нить сосуд до­вер­ху?

Спрятать решение

Ре­ше­ние.

Мень­ший конус по­до­бен боль­ше­му с ко­эф­фи­ци­ен­том  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби . Объ­е­мы по­доб­ных тел от­но­сят­ся как куб ко­эф­фи­ци­ен­та по­до­бия. По­это­му объем боль­ше­го ко­ну­са в 27 раз боль­ше объ­е­ма мень­ше­го ко­ну­са, он равен 270 мл. Сле­до­ва­тель­но, не­об­хо­ди­мо до­лить 270 − 10 = 260 мл жид­ко­сти.

 

Ответ: 260.

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 ок­тяб­ря: ва­ри­ант 166214