Задания
Версия для печати и копирования в MS Word
Тип 11 № 318225
i

В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вы­со­ты. Объём жид­ко­сти равен 53 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

 

 

konus_1_2.eps

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вы­со­ты. Объём жид­ко­сти равен 70 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы пол­но­стью на­пол­нить сосуд?

Мень­ший конус по­до­бен боль­ше­му с ко­эф­фи­ци­ен­том 0,5. Объ­е­мы по­доб­ных тел от­но­сят­ся как куб ко­эф­фи­ци­ен­та по­до­бия. По­это­му объем боль­ше­го ко­ну­са в 8 раз боль­ше объ­е­ма мень­ше­го ко­ну­са, он равен 560 мл. Сле­до­ва­тель­но, не­об­хо­ди­мо до­лить 560 − 70  =  490 мл жид­ко­сти.

 

Ответ: 490.