Задания
Версия для печати и копирования в MS Word
Тип 11 № 505401
i

В со­су­де, име­ю­щем форму ко­ну­са, уро­вень жид­ко­сти до­сти­га­ет  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вы­со­ты. Объём жид­ко­сти равен 40 мл. Сколь­ко мил­ли­лит­ров жид­ко­сти нужно до­лить, чтобы на­пол­нить сосуд до­вер­ху?

Спрятать решение

Ре­ше­ние.

Мень­ший конус по­до­бен боль­ше­му с ко­эф­фи­ци­ен­том  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби Объ­е­мы по­доб­ных тел от­но­сят­ся как куб ко­эф­фи­ци­ен­та по­до­бия. По­это­му объем боль­ше­го ко­ну­са в 8 раз боль­ше объ­е­ма мень­ше­го ко­ну­са, он равен 320 мл. Сле­до­ва­тель­но, не­об­хо­ди­мо до­лить 320 − 40 = 280 мл жид­ко­сти.

 

Ответ: 280.

Источник: Проб­ный эк­за­мен Санкт-Пе­тер­бург 2014. Ва­ри­ант 2