Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика базовая
Призма
1.  
i

Гра­нью па­рал­ле­ле­пи­пе­да яв­ля­ет­ся ромб со сто­ро­ной 1 и ост­рым углом 60 гра­ду­сов. Одно из ребер па­рал­ле­ле­пи­пе­да со­став­ля­ет с этой гра­нью угол в 60 гра­ду­сов и равно 2. Най­ди­те объем па­рал­ле­ле­пи­пе­да.

2.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1E_1F_1 все ребра равны 48. Най­ди­те рас­сто­я­ние между точ­ка­ми D и B_1.

3.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1E_1F_1 все ребра равны 40 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та . Най­ди­те рас­сто­я­ние между точ­ка­ми B_1 и E.

4.  
i

В пра­виль­ной тре­уголь­ной приз­ме ABCA1B1C1 сто­ро­ны ос­но­ва­ний равны 2, бо­ко­вые рёбра равны 5. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны рёбер AB, AC, A1B1 и A1C1.

5.  
i

В пра­виль­ной четырёхуголь­ной приз­ме ABCDA1B1C1D1 ребро AA1 равно 15, а диа­го­наль BD1 равна 17. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью, про­хо­дя­щей через точки A, A1 и C.

6.  
i

Най­ди­те объём мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки B, A_1, B_1, C_1 пра­виль­ной тре­уголь­ной приз­мы ABCA_1B_1C_1, пло­щадь ос­но­ва­ния ко­то­рой равна 9, а бо­ко­вое ребро равно 8.

7.  
i

Най­ди­те объём мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, A_1, B_1, C пра­виль­ной тре­уголь­ной приз­мы ABCA_1B_1C_1, пло­щадь ос­но­ва­ния ко­то­рой равна 3, а бо­ко­вое ребро равно 2.

8.  
i

Ос­но­ва­ни­ем пря­мой тре­уголь­ной приз­мы слу­жит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 3 и 5. Объем приз­мы равен 30. Най­ди­те ее бо­ко­вое ребро.

9.  
i

Най­ди­те объем пра­виль­ной ше­сти­уголь­ной приз­мы, сто­ро­ны ос­но­ва­ния ко­то­рой равны 1, а бо­ко­вые ребра равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

10.  
i

Най­ди­те объем пра­виль­ной ше­сти­уголь­ной приз­мы, все ребра ко­то­рой равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

11.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1E_1F_1 все ребра равны 1. Най­ди­те рас­сто­я­ние между точ­ка­ми A и E_1.

12.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1E_1F_1 все ребра равны  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та . Най­ди­те рас­сто­я­ние между точ­ка­ми B и E_1.

13.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1E_1F_1 все ребра равны 1. Най­ди­те тан­генс угла AD_1D.

14.  
i

В пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA_1B_1C_1D_1E_1F_1 все ребра равны 1. Най­ди­те угол AC_1C. Ответ дайте в гра­ду­сах.

15.  
i

В тре­уголь­ной приз­ме две бо­ко­вые грани пер­пен­ди­ку­ляр­ны. Их общее ребро равно 10 и от­сто­ит от дру­гих бо­ко­вых ребер на 6 и 8. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой приз­мы.

16.  
i

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, пло­щадь бо­ко­вой по­верх­но­сти ко­то­рой равна 24, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти от­се­чен­ной тре­уголь­ной приз­мы.

17.  
i

Най­ди­те объем приз­мы, в ос­но­ва­ни­ях ко­то­рой лежат пра­виль­ные ше­сти­уголь­ни­ки со сто­ро­на­ми 2, а бо­ко­вые ребра равны 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та и на­кло­не­ны к плос­ко­сти ос­но­ва­ния под углом 30°.

18.  
i

Пра­виль­ная че­ты­рех­уголь­ная приз­ма опи­са­на около ци­лин­дра, ра­ди­ус ос­но­ва­ния и вы­со­та ко­то­ро­го равны 1. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы.

19.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а вы­со­та равна 2.

20.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, впи­сан­ной в ци­линдр, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а вы­со­та равна 2.

21.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а вы­со­та равна 2.

22.  
i

В пра­виль­ной тре­уголь­ной приз­ме ABCA1B1C1 сто­ро­ны ос­но­ва­ний равны 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , бо­ко­вые рёбра равны 5. Най­ди­те пло­щадь се­че­ния приз­мы плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны рёбер AB, и A1B1 и точку С.