Задания
Версия для печати и копирования в MS Word
Тип Д2 № 323131
i

 

На ри­сун­ке изоб­ражён гра­фик функ­ции y=F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и одной из пер­во­об­раз­ных не­ко­то­рой функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на ин­тер­ва­ле  левая круг­лая скоб­ка минус 3;5 пра­вая круг­лая скоб­ка . Поль­зу­ясь ри­сун­ком, опре­де­ли­те ко­ли­че­ство ре­ше­ний урав­не­ния f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 на от­рез­ке  левая квад­рат­ная скоб­ка минус 2;4 пра­вая квад­рат­ная скоб­ка .

 

 

b8_1_51.0.eps

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


На ри­сун­ке изоб­ражён гра­фик функ­ции y  =  F(x)  — одной из пер­во­об­раз­ных не­ко­то­рой функ­ции f(x), опре­делённой на ин­тер­ва­ле (−3;5). Поль­зу­ясь ри­сун­ком, опре­де­ли­те ко­ли­че­ство ре­ше­ний урав­не­ния f(x)=0 на от­рез­ке [−2;4].



По опре­де­ле­нию пер­во­об­раз­ной на ин­тер­ва­ле (−3; 5) спра­вед­ли­во ра­вен­ство

 

f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =F' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .

Сле­до­ва­тель­но, ре­ше­ни­я­ми урав­не­ния f(x)=0 яв­ля­ют­ся точки экс­тре­му­мов изоб­ра­жен­ной на ри­сун­ке функ­ции F(x) Это точки −2,6; −2,2; −1,2; −0,5; 0; 0,4; 0,8; 1,2; 2,2; 2,8; 3,4; 3,8. Из них на от­рез­ке [−2;4] лежат 10 точек. Таким об­ра­зом, на от­рез­ке [−2;4] урав­не­ние f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 имеет 10 ре­ше­ний.

 

Ответ: 10.