Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика базовая
Применение производной к исследованию функций
1.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y  =  f(x), опре­де­лен­ной на ин­тер­ва­ле (−6; 8). Опре­де­ли­те ко­ли­че­ство целых точек, в ко­то­рых про­из­вод­ная функ­ции по­ло­жи­тель­на.

2.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Опре­де­ли­те ко­ли­че­ство целых точек, в ко­то­рых про­из­вод­ная функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка  от­ри­ца­тель­на.

3.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y  =  6 или сов­па­да­ет с ней.

4.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y  =  f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те сумму точек экс­тре­му­ма функ­ции f(x).

5.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле  левая круг­лая скоб­ка минус 8; 3 пра­вая круг­лая скоб­ка . В какой точке от­рез­ка  левая квад­рат­ная скоб­ка минус 3;2 пра­вая квад­рат­ная скоб­ка функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка при­ни­ма­ет наи­боль­шее зна­че­ние?

6.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−8; 4). В какой точке от­рез­ка [−7; −3] f(x) при­ни­ма­ет наи­мень­шее зна­че­ние?

7.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 14). Най­ди­те ко­ли­че­ство точек мак­си­му­ма функ­ции f(x) на от­рез­ке [−6; 9].

8.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−18; 6). Най­ди­те ко­ли­че­ство точек ми­ни­му­ма функ­ции f(x) на от­рез­ке [−13; 1].

9.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 11). Най­ди­те ко­ли­че­ство точек экс­тре­му­ма функ­ции f(x) на от­рез­ке [−10; 10].

10.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 4). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

11.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 7). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

12.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 3). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

13.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

14.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−10; 2). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции f(x) па­рал­лель­на пря­мой y = −2x − 11 или сов­па­да­ет с ней.

15.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−4; 8). Най­ди­те точку экс­тре­му­ма функ­ции f(x) на от­рез­ке [−2; 6].

16.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых про­из­вод­ная функ­ции f(x) равна 0.

17.  
i

На ри­сун­ке изоб­ражён гра­фик y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и во­семь точек на оси абс­цисс: x_1, x_2, x_3, \dots, x_8. В сколь­ких из этих точек функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка воз­рас­та­ет?

18.  
i

На ри­сун­ке изоб­ражён гра­фик y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — и во­семь точек на оси абс­цисс: x_1, x_2, x_3, \dots ,x_8. В сколь­ких из этих точек функ­ция f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка убы­ва­ет?

19.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и от­ме­че­ны точки −2, −1, 1, 4. В какой из этих точек зна­че­ние про­из­вод­ной наи­мень­шее? В от­ве­те ука­жи­те эту точку.

20.  
i

На ри­сун­ке изоб­ражён гра­фик про­из­вод­ной y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле (−8; 9). Най­ди­те ко­ли­че­ство точек ми­ни­му­ма функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , при­над­ле­жа­щих от­рез­ку [−4; 8].

21.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции у = f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f(x), опре­делённой на ин­тер­ва­ле (1; 10). Най­ди­те точку ми­ни­му­ма функ­ции f(x).

22.  
i

На ри­сун­ке изоб­ражён гра­фик про­из­вод­ной y  =  f'(x) функ­ции y  =  f(x), опре­делённой на ин­тер­ва­ле (−4; 8). В какой точке от­рез­ка [−3; 1] функ­ция y  =  f(x) при­ни­ма­ет наи­мень­шее зна­че­ние?

23.  
i

Функ­ция y  =  f (x) опре­де­ле­на и не­пре­рыв­на на от­рез­ке [−5; 5]. На ри­сун­ке изоб­ражён гра­фик её про­из­вод­ной. Най­ди­те точку x0, в ко­то­рой функ­ция при­ни­ма­ет наи­мень­шее зна­че­ние, если f (−5)  ≥  f (5).

24.  
i

На ри­сун­ке изоб­ра­же­ны гра­фик функ­ции y  =  f(x) и ка­са­тель­ная к нему в точке с абс­цис­сой x_0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции f(x) в точке x_0.

25.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−10; 6). В какой точке от­рез­ка [−2; 4] функ­ция f(x) при­ни­ма­ет наи­мень­шее зна­че­ние?

 

26.  
i

Функ­ция y = f(x) опре­де­ле­на на про­ме­жут­ке (−6; 4). На ри­сун­ке изоб­ра­жен гра­фик ее про­из­вод­ной. Най­ди­те абс­цис­су точки, в ко­то­рой функ­ция y = f(x) при­ни­ма­ет наи­боль­шее зна­че­ние.

27.  
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции y = f(x). При каком зна­че­нии x эта функ­ция при­ни­ма­ет свое наи­боль­шее зна­че­ние на от­рез­ке [−4; −2]?