Основания трапеции равны 8 и 16, боковая сторона, равная 6, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.
Решение.
Угол в 150° образует боковая сторона и меньшее основание, тогда с большим основанием эта сторона образует угол 30°. Проведем высоту трапеции и рассмотрим прямоугольный треугольник. Из определения синуса острого угла прямоугольного треугольника получаем:
Основания трапеции равны 15 и 25, боковая сторона, равная 14, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.
Решение.
Угол в 150° образует боковая сторона и меньшее основание, тогда с большим основанием эта сторона образует угол 30°. Проведем высоту трапеции и рассмотрим прямоугольный треугольник. Из определения синуса острого угла прямоугольного треугольника получаем:
Основания трапеции равны 6 и 12, боковая сторона, равная 6, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.
Решение.
Угол в 150° образует боковая сторона и меньшее основание, тогда с большим основанием эта сторона образует угол 30°. Проведем высоту трапеции и рассмотрим прямоугольный треугольник. Из определения синуса острого угла прямоугольного треугольника получаем:
Основания трапеции равны 13 и 19, боковая сторона, равная 8, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.
Решение.
Угол в 150° образует боковая сторона и меньшее основание, тогда с большим основанием эта сторона образует угол 30°. Проведем высоту трапеции и рассмотрим прямоугольный треугольник. Из определения синуса острого угла прямоугольного треугольника получаем:
Основания трапеции равны 9 и 19, боковая сторона, равная 8, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.
Решение.
Угол в 150° образует боковая сторона и меньшее основание, тогда с большим основанием эта сторона образует угол 30°. Проведем высоту трапеции и рассмотрим прямоугольный треугольник. Из определения синуса острого угла прямоугольного треугольника получаем: