Задания
Версия для печати и копирования в MS Word
Тип Д16 № 76205
i

 

Най­ди­те пло­щадь по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды,  сто­ро­ны ос­но­ва­ния ко­то­рой равны 18 и вы­со­та равна 40.

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


Най­ди­те пло­щадь по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 6 и вы­со­та равна 4.

Пло­щадь по­верх­но­сти скла­ды­ва­ет­ся из пло­ща­ди ос­но­ва­ния и пло­ща­ди че­ты­рех бо­ко­вых гра­ней: S=S_осн плюс 4S_\Delta . Апо­фе­му най­дем по тео­ре­ме Пи­фа­го­ра: h= ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та в квад­ра­те плюс 4 в квад­ра­те =5. Тогда пло­щадь по­верх­но­сти пи­ра­ми­ды:

S=6 умно­жить на 6 плюс 4 умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби умно­жить на 6 умно­жить на 5=96.

 

Ответ: 96.


Аналоги к заданию № 27155: 76195 76197 76199 ... Все