Задания
Версия для печати и копирования в MS WordКузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, сделав ровно 12 прыжков, начиная прыгать из начала координат?
Решение.
Заметим, что кузнечик может оказаться только в точках с чётными координатами, поскольку число прыжков, которое он делает, — чётно. Максимально кузнечик может оказаться в точках, модуль которых не превышает двенадцати. Таким образом, кузнечик может оказаться в точках: −12, −10, −8, −6, −4, −2, 0, 2, 4, 6, 8, 10 и 12; всего 13 точек.
Ответ: 13.
-------------
Дублирует задание № 508401.

