На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 0,5.
Определим знаки производной функции: она положительна при x < 0,5 и отрицательна при x > 0,5. Поэтому искомая точка максимума — число 0,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.
На заданном промежутке (первая четверть без граничных точек) синус не обращается в нуль и принимает только положительные значения. Поэтому единственный нуль производной — число 1,5.
Определим знаки производной функции: она положительна при x < 1,5 и отрицательна при x > 1,5. Поэтому искомая точка максимума — число 1,5.