Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 4 № 512412
i

Сумма углов пра­виль­но­го вы­пук­ло­го мно­го­уголь­ни­ка вы­чис­ля­ет­ся по фор­му­ле \sum= левая круг­лая скоб­ка n минус 2 пра­вая круг­лая скоб­ка Пи , где n  — ко­ли­че­ство его углов. Поль­зу­ясь этой фор­му­лой, най­ди­те n, если \sum  =  6π.


Аналоги к заданию № 512412: 512432 512452 512472 Все


2
Тип 4 № 512432
i

Сумма углов пра­виль­но­го вы­пук­ло­го мно­го­уголь­ни­ка вы­чис­ля­ет­ся по фор­му­ле \sum= левая круг­лая скоб­ка n минус 2 пра­вая круг­лая скоб­ка Пи , где n  — ко­ли­че­ство его углов. Поль­зу­ясь этой фор­му­лой, най­ди­те n, если \sum = 14π.


Аналоги к заданию № 512412: 512432 512452 512472 Все


3
Тип 4 № 512452
i

Сумма углов пра­виль­но­го вы­пук­ло­го мно­го­уголь­ни­ка вы­чис­ля­ет­ся по фор­му­ле \sum= левая круг­лая скоб­ка n минус 2 пра­вая круг­лая скоб­ка Пи , где n  — ко­ли­че­ство его углов. Поль­зу­ясь этой фор­му­лой, най­ди­те n, если \sum = 15π.


Аналоги к заданию № 512412: 512432 512452 512472 Все


4
Тип 4 № 512472
i

Сумма углов пра­виль­но­го вы­пук­ло­го мно­го­уголь­ни­ка вы­чис­ля­ет­ся по фор­му­ле \sum= левая круг­лая скоб­ка n минус 2 пра­вая круг­лая скоб­ка Пи , где n  — ко­ли­че­ство его углов. Поль­зу­ясь этой фор­му­лой, най­ди­те n, если \sum = 18π.


Аналоги к заданию № 512412: 512432 512452 512472 Все