Производная и первообразная. Геометрический смысл производной, касательная
i
На рисунке изображен график функции y = f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите
Решение.
Поскольку касательная проходит через начало координат, её уравнение имеет вид y = kx. Эта прямая проходит через точку (8; 10), поэтому 10 = 8 · k, откуда k = 1,25. Поскольку угловой коэффициент касательной равен значению производной в точке касания, получаем:
Производная и первообразная. Геометрический смысл производной, касательная
i
На рисунке изображен график функции Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 10. Найдите
Решение.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная проходит через начало координат, ее уравнение имеет вид Прямая проходит через точку (10; −6), значит, Поскольку угловой коэффициент равен значению производной в точке касания получаем: