Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 9.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (3;7), (1;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (5;7), (1;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (7;7), (1;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (9;7), (1;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;7), (2;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;7), (3;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;7), (6;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;7), (7;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (4;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (8;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (3;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (5;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (7;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (9;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;9), (2;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;9), (3;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;9), (6;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;1), (10;1), (10;9), (7;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;6), (8;6).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (6;7), (1;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;7), (3;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;7), (5;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;7), (7;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (4;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (6;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (8;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;8), (4;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;8), (5;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;8), (8;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (6;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;9), (3;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;9), (5;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;2), (10;2), (10;9), (7;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (10;7), (6;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (10;7), (7;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (4;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (8;8), (1;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (3;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (5;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (7;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (9;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (10;9), (2;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (10;9), (3;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (10;9), (6;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;3), (10;3), (10;9), (7;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (10;8), (4;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (10;8), (5;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (10;8), (8;8).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (6;9), (1;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (10;9), (3;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (10;9), (5;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (1;4), (10;4), (10;9), (7;9).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, изображенной на рисунке.
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (2;1), (10;1), (7;7), (2;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (2;1), (10;1), (9;7), (2;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (2;1), (10;1), (10;7), (4;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (2;1), (10;1), (10;7), (5;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847 22855 22861 22873 22875 22879 22899 22901 22903 22935 22953 22957 22963 22965 22973 22977 22979 22981 22983 23001 23003 23005 23007 23021 23023 23035 23039 23045 23051 23059 23063 23065 23073 23075 23077 23079 23091 23095 23101 23107 23109 23123 23131 23133 23135 23163 23165 23179 23183 23187 23189 23197 23199 23201 23203 23215 23219 23225 23231 23239 23243 23245 23251 23253 23267 23275 23277 23279 23307 23311 23313 23335 23337 23339 23347 23359 23361 23369 23393 23395 23397 23417 23429 23431 23437 23439 23459 23483 23485 23487 23489 23495 23499 23505 23509 23513 23519 23521 23529 23537 23539 23541 23547 23551 23557 23559 23567 23587 23595 23597 23615 23623 23643 23645 23647 23661 23663 23673 23691 23703 23717 23719 23721 23737 23759 23761 23763 23777 23779 23791 23803 23817 23819 23821 23837 23839 23849 23867 23879 23889 23897 23901 23907 23909 23917 23931 23933 23939 23945 23951 23959 23969 23989 23991 24007 24013 24015 24017 24025 24027 24041 24061 24079 24085 24091 24093 24095 24103 24117 24119 24125 24131 24137 24145 24155 24173 24175 24189 Все
Найдите площадь прямоугольной трапеции, вершины которой имеют координаты (2;1), (10;1), (10;7), (8;7).
Решение.
Это задание ещё не решено, приводим решение прототипа.
Найдите площадь трапеции, вершины которой имеют координаты (1;1), (10;1), (10;6), (5;6).
Площадь трапеции равна произведению полусуммы оснований на высоту. Поэтому
см2.
Ответ: 35.
Аналоги к заданию № 27573: 24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 ...24209 22491 22493 22495 22497 22505 22511 22523 22525 22527 22529 22543 22545 22547 22549 22557 22563 22575 22577 22581 22601 22603 22605 22637 22657 22659 22661 22675 22677 22685 22689 22691 22693 22695 22697 22717 22721 22727 22729 22737 22741 22743 22745 22747 22765 22767 22769 22771 22801 22803 22821 22823 22825 22827 22841 22843 22845 22847