Задания
Версия для печати и копирования в MS Word
Тип Д16 № 76463
i

 

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, впи­сан­ной в ци­линдр, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а вы­со­та равна 5.

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, впи­сан­ной в ци­линдр, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а вы­со­та равна 2.

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка вы­ра­жа­ет­ся через ра­ди­ус опи­сан­ной окруж­но­сти как a= ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та r=2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та =6. Пло­щадь бо­ко­вой по­верх­но­сти приз­мы тогда равна

S_бок=Ph=3ah=3 умно­жить на 6 умно­жить на 2=36.

Ответ: 36.