Задания
Версия для печати и копирования в MS Word
Тип Д16 № 75291
i

 

Конус опи­сан около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды со сто­ро­ной ос­но­ва­ния 6 и вы­со­той 5. Най­ди­те его объем, де­лен­ный на  Пи .

Ре­ше­ние.

Это за­да­ние ещё не ре­ше­но, при­во­дим ре­ше­ние про­то­ти­па.


Конус опи­сан около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды со сто­ро­ной ос­но­ва­ния 4 и вы­со­той 6. Най­ди­те его объем, де­лен­ный на  Пи .

Ра­ди­ус ос­но­ва­ния ко­ну­са r равен по­ло­ви­не диа­го­на­ли квад­ра­та ABCD: r= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби AB=2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . Тогда объем ко­ну­са, де­лен­ный на  Пи :

 дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби дробь: чис­ли­тель: Sh, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби дробь: чис­ли­тель: Пи r в квад­ра­те h, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби r в квад­ра­те h= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби 8 умно­жить на 6=16.

 

Ответ: 16.