Задания
Версия для печати и копирования в MS Word
Тип Д16 № 75235
i

Диа­метр ос­но­ва­ния ко­ну­са равен 30, а угол при вер­ши­не осе­во­го се­че­ния равен 90°. Вы­чис­ли­те объем ко­ну­са, де­лен­ный на π.

Спрятать решение

Ре­ше­ние.

В тре­уголь­ни­ке, об­ра­зо­ван­ном ра­ди­у­сом ос­но­ва­ния r, вы­со­той h и об­ра­зу­ю­щей ко­ну­са l, углы при об­ра­зу­ю­щей равны, по­это­му вы­со­та ко­ну­са равна ра­ди­у­су его ос­но­ва­ния: h = r. Тогда объем ко­ну­са, де­лен­ный на  Пи , вы­чис­ля­ет­ся сле­ду­ю­щим об­ра­зом:

 дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби дробь: чис­ли­тель: Sh, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби дробь: чис­ли­тель: Пи r в квад­ра­те h, зна­ме­на­тель: Пи конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби r в квад­ра­те r= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби умно­жить на 15 в кубе =1125.

 

Ответ: 1125.


Аналоги к заданию № 27121: 75233 75235 75225 ... Все