Задания
Версия для печати и копирования в MS Word

Вода в со­су­де ци­лин­дри­че­ской формы на­хо­дит­ся на уров­не h = 80 см. На каком уров­не ока­жет­ся вода, если её пе­ре­лить в дру­гой ци­лин­дри­че­ский сосуд, у ко­то­ро­го ра­ди­ус ос­но­ва­ния в че­ты­ре раза боль­ше, чем у дан­но­го? Ответ дайте в сан­ти­мет­рах.

 

 

 

ИЛИ

 

 

От де­ре­вян­но­го ку­би­ка от­пи­ли­ли все его вер­ши­ны (см. рис.). Сколь­ко вер­шин у по­лу­чив­ше­го­ся мно­го­гран­ни­ка (не­ви­ди­мые рёбра на ри­сун­ке не изоб­ра­же­ны)?

Спрятать решение

Ре­ше­ние.

Объём воды, на­ли­той в ци­линдр, вы­со­той h и ра­ди­у­сом r равен  Пи r в квад­ра­те h. Сле­до­ва­тель­но, при уве­ли­че­нии ра­ди­у­са ци­лин­дра в 4 раза, при не­из­мен­ном объёме, вы­со­та стола воды ока­жет­ся в 4 в квад­ра­те =16 раз мень­ше, зна­чит, вода во вто­ром ци­лин­дре до­стиг­нет уров­ня 5 см.

 

Ответ: 5 см.

ИЛИ

Из­на­чаль­но у де­ре­вян­но­го ку­би­ка 8 вер­шин. Когда от ку­би­ка от­пи­ли­ли все вер­ши­ны, ко­ли­че­ство вер­шин стало равно 8 · 3  =  24.

 

Ответ: 24.


-------------
Дублирует задание № ряд заданий.
Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ по ма­те­ма­ти­ке — 2021. Ба­зо­вый уро­вень