СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика базового уровня
Математика базового уровня
Cайты, меню, вход, новости


Задания
Версия для печати и копирования в MS Word
Задания Д13 № 324459

Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 2. Найдите объём куба.

Решение.

Высота отсчённой призмы равна ребру куба, поэтому их объёмы относятся как площади оснований. Отрезок FE — средняя линия треугольника DBC, поэтому треугольники FCE и DCB подобны с коэффициентом подобия 1 : 2, а их площади относятся как 1 : 4. Поскольку квадрата АDCB вдвое больше площади треугольника DCB, площадь АDCB в 8 раз больше площади треугольника FCE.

Тем самым, объём куба в 8 раз больше объёема отсечённой призмы, поэтому он равен 16.

 

Ответ: 16.