Задания
Версия для печати и копирования в MS Word
Тип 5 № 320999
i

Ков­бой Джон по­па­да­ет в муху на стене с ве­ро­ят­но­стью 0,9, если стре­ля­ет из при­стре­лян­но­го ре­воль­ве­ра. Если Джон стре­ля­ет из не­при­стре­лян­но­го ре­воль­ве­ра, то он по­па­да­ет в муху с ве­ро­ят­но­стью 0,4. На столе лежит 10 ре­воль­ве­ров, из них толь­ко 2 при­стре­лян­ные. Ков­бой Джон видит на стене муху, на­уда­чу хва­та­ет пер­вый по­пав­ший­ся ре­воль­вер и стре­ля­ет в муху. Най­ди­те ве­ро­ят­ность того, что Джон про­махнётся.

Спрятать решение

Ре­ше­ние.

Джон про­мах­нет­ся, если схва­тит при­стре­лян­ный ре­воль­вер и про­мах­нет­ся из него, или если схва­тит не­при­стре­лян­ный ре­воль­вер и про­мах­нет­ся из него. По фор­му­ле услов­ной ве­ро­ят­но­сти, ве­ро­ят­но­сти этих со­бы­тий равны со­от­вет­ствен­но 0,2·(1 − 0,9)  =  0,02 и 0,8·(1 − 0,4)  =  0,48. Эти со­бы­тия не­сов­мест­ны, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий: 0,02 + 0,48  =  0,5.

 

Ответ: 0,5.