СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика базового уровня
≡ математика базовый уровень
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 10 № 320172

В тор­го­вом центре два оди­на­ко­вых автомата про­да­ют кофе. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те закончится кофе, равна 0,3. Ве­ро­ят­ность того, что кофе за­кон­чит­ся в обоих автоматах, равна 0,12. Най­ди­те вероятность того, что к концу дня кофе оста­нет­ся в обоих автоматах.

Решение.

Рассмотрим события

 

А = кофе закончится в первом автомате,

В = кофе закончится во втором автомате.

 

Тогда

A·B = кофе закончится в обоих автоматах,

A + B = кофе закончится хотя бы в одном автомате.

 

По условию P(A) = P(B) = 0,3; P(A·B) = 0,12.

 

События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

 

P(A + B) = P(A) + P(B) − P(A·B) = 0,3 + 0,3 − 0,12 = 0,48.

 

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,48 = 0,52.

 

Ответ: 0,52.

 

Приведем другое решение.

Вероятность того, что кофе останется в первом автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется во втором автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,12 = 0,88. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,88 = 0,7 + 0,7 − х, откуда искомая вероятость х = 0,52.

 

Примечание.

Заметим, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,3·0,3 = 0,09, однако, по условию, эта вероятность равна 0,12.

Раздел кодификатора ФИПИ: Теоремы о вероятностях событий