Задания
Версия для печати и копирования в MS Word
Тип 20 № 114785
i

Часы со стрел­ка­ми по­ка­зы­ва­ют 3 часа ровно. Через сколь­ко минут ми­нут­ная стрел­ка в де­вя­тый раз по­рав­ня­ет­ся с ча­со­вой?

Спрятать решение

Ре­ше­ние.

Ско­рость дви­же­ния ми­нут­ной стрел­ки 12 де­ле­ний/час (под одним де­ле­ни­ем здесь под­ра­зу­ме­ва­ет­ся рас­сто­я­ние между со­сед­ни­ми циф­ра­ми на ци­фер­бла­те часов), а ча­со­вой − 1 де­ле­ние/час. До де­вя­той встре­чи ми­нут­ной и ча­со­вой стре­лок ми­нут­ная долж­на сна­ча­ла 8 раз «обо­гнать» ча­со­вую, то есть прой­ти 8 кру­гов по 12 де­ле­ний. Пусть после этого до по­след­ней встре­чи ча­со­вая стрел­ка прой­дет L де­ле­ний. Тогда общий путь ми­нут­ной стрел­ки скла­ды­ва­ет­ся из най­ден­ных 96 де­ле­ний, ещё 3 из­на­чаль­но раз­де­ля­ю­щих их де­ле­ний (по­сколь­ку часы по­ка­зы­ва­ют 3 часа) и по­след­них L де­ле­ний. При­рав­ня­ем время дви­же­ния для ча­со­вой и ми­нут­ной стре­лок:

 дробь: чис­ли­тель: L, зна­ме­на­тель: 1 конец дроби = дробь: чис­ли­тель: L плюс 3 плюс 96, зна­ме­на­тель: 12 конец дроби рав­но­силь­но 12L=L плюс 99 рав­но­силь­но L=9.

 

Ча­со­вая стрел­ка прой­дет 9 де­ле­ний, что со­от­вет­ству­ет 9 часам или 540 ми­ну­там.

 

Ответ: 540.