Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика базовая
Варианты заданий
1.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы и опре­де­ля­ет­ся по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 360c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

2.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 345\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

3.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 300 c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

4.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 210 c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

5.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 360 c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на одну пят­на­дца­тую. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

6.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 360 c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на одну треть. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

7.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 360 c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

8.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 360 c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 1,25\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

9.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 330\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

10.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 341\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 202,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

11.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 315\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 22,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

12.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 225\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 153,125\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

13.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 210\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 37,8125\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

14.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 220\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 202,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

15.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 320\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 56,25\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

16.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 338\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 576\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

17.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 225\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 1,25\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

18.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 245\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 22,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

19.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 351\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

20.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 330\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

21.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 315\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 37,8125\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

22.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 351\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

23.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 275\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 202,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

24.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 375\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

25.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 324\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

26.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 315\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 12,5\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

27.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 390\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 5,625\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

28.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 345\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

29.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 324\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 1,25\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

30.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 315\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 80\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

31.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 360\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 56,25\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .

32.  
i

Ам­пли­ту­да ко­ле­ба­ний ма­ят­ни­ка за­ви­сит от ча­сто­ты вы­нуж­да­ю­щей силы, опре­де­ля­е­мой по фор­му­ле A левая круг­лая скоб­ка \omega пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: A_0 \omega _p в квад­ра­те , зна­ме­на­тель: |\omega_p в квад­ра­те минус \omega в квад­ра­те | конец дроби , где \omega   — ча­сто­та вы­нуж­да­ю­щей силы (в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ), A_0   — по­сто­ян­ный па­ра­метр, \omega_p = 338\;c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка   — ре­зо­нанс­ная ча­сто­та. Най­ди­те мак­си­маль­ную ча­сто­ту \omega , мень­шую ре­зо­нанс­ной, для ко­то­рой ам­пли­ту­да ко­ле­ба­ний пре­вос­хо­дит ве­ли­чи­ну A_0 не более чем на 5,625\%. Ответ вы­ра­зи­те в c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .