СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика базового уровня
≡ математика базовый уровень
сайты - меню - вход - новости




Каталог заданий
Задачи на смекалку

Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 20 № 506313

Каждую се­кун­ду бак­те­рия де­лит­ся на две новые бактерии. Известно, что весь объём од­но­го ста­ка­на бак­те­рии за­пол­ня­ют за 1 час. За сколько секунд стакан будет заполнен бактериями наполовину?

Источник: РЕШУ ЕГЭ

2
Задание 20 № 510016

На палке от­ме­че­ны по­пе­реч­ные линии красного, жёлтого и зелёного цвета. Если рас­пи­лить палку по крас­ным линиям, по­лу­чит­ся 15 кусков, если по жёлтым — 5 кусков, а если по зелёным — 7 кусков. Сколь­ко кус­ков получится, если рас­пи­лить палку по ли­ни­ям всех трёх цветов?

Решение · ·

3
Задание 20 № 510036

Кузнечик пры­га­ет вдоль ко­ор­ди­нат­ной пря­мой в любом на­прав­ле­нии на еди­нич­ный от­ре­зок за один прыжок. Куз­не­чик на­чи­на­ет пры­гать из на­ча­ла координат. Сколь­ко су­ще­ству­ет раз­лич­ных точек на ко­ор­ди­нат­ной прямой, в ко­то­рых куз­не­чик может оказаться, сде­лав ровно 11 прыжков?

Решение · ·

4
Задание 20 № 510166

В кор­зи­не лежит 40 грибов: ры­жи­ки и грузди. Известно, что среди любых 17 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 25 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в корзине?


Аналоги к заданию № 510166: 506363 509665 510696 510716 506463 506503 511973 511993 510278 510288 Все

Номер в банке ФИПИ: 9A27F4

5
Задание 20 № 510211

Саша при­гла­сил Петю в гости, сказав, что живёт в седь­мом подъ­ез­де в квар­ти­ре № 462, а этаж ска­зать забыл. По­дой­дя к дому, Петя обнаружил, что дом семиэтажный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир одинаково, но­ме­ра квар­тир в доме на­чи­на­ют­ся с единицы.)


6
Задание 20 № 510231

Саша при­гла­сил Петю в гости, сказав, что живёт в вось­мом подъ­ез­де в квар­ти­ре № 468, а этаж ска­зать забыл. По­дой­дя к дому, Петя обнаружил, что дом двенадцатиэтажный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир одинаково, но­ме­ра квар­тир в доме на­чи­на­ют­ся с единицы.)


Аналоги к заданию № 510231: 514186 514206 Все


7
Задание 20 № 510251

Саша при­гла­сил Петю в гости, сказав, что живёт в две­на­дца­том подъ­ез­де в квар­ти­ре № 465, а этаж ска­зать забыл. По­дой­дя к дому, Петя обнаружил, что дом пятиэтажный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир одинаково, но­ме­ра квар­тир в доме на­чи­на­ют­ся с единицы.)


8
Задание 20 № 510271

Саша при­гла­сил Петю в гости, сказав, что живёт в де­ся­том подъ­ез­де в квар­ти­ре № 333, а этаж ска­зать забыл. По­дой­дя к дому, Петя обнаружил, что дом девятиэтажный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир одинаково, но­ме­ра квар­тир в доме на­чи­на­ют­ся с единицы.)


9
Задание 20 № 507073

Тренер по­со­ве­то­вал Ан­дрею в пер­вый день за­ня­тий про­ве­сти на бе­го­вой до­рож­ке 15 минут, а на каж­дом сле­ду­ю­щем за­ня­тии уве­ли­чи­вать время, проведённое на бе­го­вой дорожке, на 7 минут. За сколь­ко за­ня­тий Ан­дрей проведёт на бе­го­вой до­рож­ке в общей слож­но­сти 2 часа 25 минут, если будет сле­до­вать со­ве­там тренера?


Аналоги к заданию № 507073: 509765 Все

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.
Решение · ·

10
Задание 20 № 507074

Врач про­пи­сал пациенту при­ни­мать лекарство по такой схеме: в пер­вый день он дол­жен принять 3 капли, а в каж­дый следующий день — на 3 капли больше, чем в предыдущий. При­няв 30 капель, он ещё 3 дня пьёт по 30 ка­пель лекарства, а потом еже­днев­но уменьшает приём на 3 капли. Сколь­ко пузырьков ле­кар­ства нужно ку­пить пациенту на весь курс приёма, если в каж­дом содержится 20 мл ле­кар­ства (что со­став­ля­ет 250 капель)?

Источник: Пробный эк­за­мен Санкт-Петербург 11.04.2017. Ва­ри­ант 1.

11
Задание 20 № 509705

Врач про­пи­сал па­ци­ен­ту при­ни­мать ле­кар­ство по такой схеме: в пер­вый день он дол­жен при­нять 20 капель, а в каж­дый сле­ду­ю­щий день — на 3 капли больше, чем в предыдущий. После 15 дней приёма па­ци­ент де­ла­ет пе­ре­рыв в 3 дня и про­дол­жа­ет при­ни­мать ле­кар­ство по об­рат­ной схеме: в 19-й день он при­ни­ма­ет столь­ко же капель, сколь­ко и в 15-й день, а затем еже­днев­но умень­ша­ет дозу на 3 капли, пока до­зи­ров­ка не ста­нет мень­ше 3 ка­пель в день. Сколь­ко пу­зырь­ков ле­кар­ства нужно ку­пить па­ци­ен­ту на весь курс приёма, если в каж­дом со­дер­жит­ся 200 капель?

Источник: Пробный эк­за­мен Санкт-Петербург 11.04.2017. Ва­ри­ант 2.

12
Задание 20 № 507075

Произведение де­ся­ти идущих под­ряд чисел раз­де­ли­ли на 7. Чему может быть равен остаток?

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

13
Задание 20 № 507076

Сколькими спо­со­ба­ми можно по­ста­вить в ряд два оди­на­ко­вых крас­ных кубика, три оди­на­ко­вых зелёных ку­би­ка и один синий кубик?

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

14
Задание 20 № 507077

В бак объёмом 38 лит­ров каж­дый час, на­чи­ная с 12 часов, на­ли­ва­ют пол­ное ведро воды объёмом 8 литров. Но в днище бака есть не­боль­шая щель, и из неё за час вы­те­ка­ет 3 литра. В какой мо­мент вре­ме­ни (в часах) бак будет за­пол­нен полностью.

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

15
Задание 20 № 507078

Какое наи­мень­шее число иду­щих под­ряд чисел нужно взять, чтобы их про­из­ве­де­ние де­ли­лось на 7?


Аналоги к заданию № 507078: 507083 Все

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

16
Задание 20 № 507079

В ре­зуль­та­те паводка кот­ло­ван заполнился водой до уров­ня 2 метра. Стро­и­тель­ная помпа не­пре­рыв­но откачивает воду, по­ни­жая её уро­вень на 20 см в час. Под­поч­вен­ные воды, наоборот, по­вы­ша­ют уровень воды в кот­ло­ва­не на 5 см в час. За сколь­ко часов ра­бо­ты помпы уро­вень воды в кот­ло­ва­не опустится до 80 см?

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

17
Задание 20 № 507080

В меню ре­сто­ра­на имеется 6 видов салатов, 3 вида пер­вых блюд, 5 видов вто­рых блюд и 4 вида десерта. Сколь­ко вариантов обеда из салата, первого, вто­ро­го и де­сер­та могут вы­брать посетители этого ресторана?


Аналоги к заданию № 507080: 507082 Все

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

18
Задание 20 № 507081

Нефтяная ком­па­ния бурит сква­жи­ну для до­бы­чи нефти, ко­то­рая залегает, по дан­ным геологоразведки, на глу­би­не 3 км. В те­че­ние ра­бо­че­го дня бу­риль­щи­ки про­хо­дят 300 мет­ров в глубину, но за ночь сква­жи­на вновь «заиливается», то есть за­пол­ня­ет­ся грун­том на 30 метров. За сколь­ко ра­бо­чих дней неф­тя­ни­ки про­бу­рят сква­жи­ну до глу­би­ны за­ле­га­ния нефти?

Источник: Типовые те­сто­вые задания по математике, под редакцией И. В. Ященко. 2015 г.

19
Задание 20 № 507083

Какое наи­мень­шее число иду­щих под­ряд чисел нужно взять, чтобы их про­из­ве­де­ние де­ли­лось на 9?


20
Задание 20 № 509227

В об­мен­ном пункте можно со­вер­шить одну из двух операций:

• за 2 зо­ло­тых монеты по­лу­чить 3 се­реб­ря­ных и одну медную;

• за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тых и одну медную.

У Ни­ко­лая были толь­ко серебряные монеты. После не­сколь­ких посещений об­мен­но­го пункта се­реб­ря­ных монет у него стало меньше, зо­ло­тых не появилось, зато по­яви­лось 50 медных. На сколь­ко уменьшилось ко­ли­че­ство серебряных монет у Николая?


Аналоги к заданию № 509227: 509685 Все

Источник: ЕГЭ — 2015. До­сроч­ная волна.
Решение · ·

21
Задание 20 № 509625

На по­верх­но­сти глобуса фло­ма­сте­ром проведены 12 па­рал­ле­лей и 22 меридиана. На сколь­ко частей проведённые линии раз­де­ли­ли поверхность глобуса?

Меридиан — это дуга окружности, со­еди­ня­ю­щая Северный и Южный полюсы. Па­рал­лель — это окружность, ле­жа­щая в плоскости, па­рал­лель­ной плоскости экватора.


Аналоги к заданию № 509625: 509645 511604 511644 511724 511744 512252 512392 Все


22
Задание 20 № 509665

В кор­зи­не лежит 50 грибов: ры­жи­ки и грузди. Известно, что среди любых 28 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 24 гри­бов хотя бы один груздь. Сколь­ко груз­дей в корзине?


23
Задание 20 № 509725

Группа ту­ри­стов преодолела гор­ный перевал. Пер­вый километр подъёма они пре­одо­ле­ли за 50 минут, а каж­дый следующий ки­ло­метр проходили на 15 минут доль­ше предыдущего. По­след­ний километр перед вер­ши­ной был прой­ден за 95 минут. После де­ся­ти­ми­нут­но­го отдыха на вер­ши­не туристы на­ча­ли спуск, ко­то­рый был более пологим. Пер­вый километр после вер­ши­ны был прой­ден за час, а каж­дый следующий на 10 минут быст­рее предыдущего. Сколь­ко часов груп­па затратила на весь маршрут, если по­след­ний километр спус­ка был прой­ден за 10 минут.


24
Задание 20 № 509986

На коль­це­вой до­ро­ге рас­по­ло­же­ны че­ты­ре бензоколонки: A, B, C и D. Рас­сто­я­ние между A и B — 35 км, между A и C — 20 км, между C и D — 20 км, между D и A — 30 км (все рас­сто­я­ния из­ме­ря­ют­ся вдоль коль­це­вой до­ро­ги в крат­чай­шую сторону). Най­ди­те рас­сто­я­ние между B и C. Ответ дайте в километрах.


25
Задание 20 № 506383

На коль­це­вой до­ро­ге рас­по­ло­же­ны че­ты­ре бензоколонки: A, B, C и D. Рас­сто­я­ние между A и B — 50 км, между A и C — 40 км, между C и D — 25 км, между D и A — 35 км (все рас­сто­я­ния из­ме­ря­ют­ся вдоль коль­це­вой до­ро­ги в крат­чай­шую сторону). Най­ди­те рас­сто­я­ние между B и C.

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 120914.

26
Задание 20 № 506319

В клас­се учит­ся 25 учащихся. Не­сколь­ко из них хо­ди­ли в кино, 18 че­ло­век хо­ди­ли в театр, причём и в кино, и в театр хо­ди­ли 12 человек. Известно, что трое не хо­ди­ли ни в кино, ни в театр. Сколь­ко че­ло­век из клас­са хо­ди­ли в кино?

Источник: РЕШУ ЕГЭ

27
Задание 20 № 506733

По эмпирическому закону Мура среднее число транзисторов на микросхемах каждый год удваивается. Известно, что в 2005 году среднее число транзисторов на микросхеме равнялось 520 млн. Определите, сколько в среднем миллионов транзисторов было на микросхеме в 2003 году.

Источник: РЕШУ ЕГЭ

28
Задание 20 № 506732

В пер­вом ряду ки­но­за­ла 24 места, а в каж­дом сле­ду­ю­щем на 2 боль­ше, чем в преды­ду­щем. Сколь­ко мест в вось­мом ряду?

Источник: СДАМ ГИА

29
Задание 20 № 506443

На палке от­ме­че­ны по­пе­реч­ные линии красного, жёлтого и зелёного цвета. Если рас­пи­лить палку по крас­ным линиям, по­лу­чит­ся 5 кусков, если по жёлтым — 7 кусков, а если по зелёным — 11 кусков. Сколь­ко кус­ков получится, если рас­пи­лить палку по ли­ни­ям всех трёх цветов?


Аналоги к заданию № 506443: 509785 Все

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166083.
Номер в банке ФИПИ: 38B0FE

30
Задание 20 № 506343

В ма­га­зи­не бы­то­вой тех­ни­ки объём про­даж хо­ло­диль­ни­ков носит се­зон­ный характер. В ян­ва­ре было про­да­но 10 холодильников, и в три по­сле­ду­ю­щих ме­ся­ца про­да­ва­ли по 10 холодильников. С мая про­да­жи уве­ли­чи­ва­лись на 15 еди­ниц по срав­не­нию с преды­ду­щим месяцем. С сен­тяб­ря объём про­даж начал умень­шать­ся на 15 хо­ло­диль­ни­ков каж­дый месяц от­но­си­тель­но преды­ду­ще­го месяца. Сколь­ко хо­ло­диль­ни­ков про­дал ма­га­зин за год?


Аналоги к заданию № 506343: 506483 Все

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 120912.

31
Задание 20 № 506423

В об­мен­ном пунк­те можно со­вер­шить одну из двух операций:

1) за 3 зо­ло­тых мо­не­ты по­лу­чить 4 се­реб­ря­ных и одну медную;

2) за 6 се­реб­ря­ных монет по­лу­чить 4 зо­ло­тых и одну медную.

У Ни­ко­лы были толь­ко се­реб­ря­ные монеты. После по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало меньше, зо­ло­тых не появилось, зато по­яви­лось 35 медных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Николы?


Аналоги к заданию № 506423: 506666 511450 511764 511784 511933 511953 510340 Все

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166082.

32
Задание 20 № 506403

Саша при­гла­сил Петю в гости, сказав, что живёт в седь­мом подъ­ез­де в квар­ти­ре № 462, а этаж ска­зать забыл. По­дой­дя к дому, Петя обнаружил, что дом семиэтажный. На каком этаже живёт Саша? (На каж­дом этаже число квар­тир одинаково, но­ме­ра квар­тир в доме на­чи­на­ют­ся с единицы.)


Аналоги к заданию № 506403: 506626 506708 509605 511624 511664 511704 511684 Все

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166081.

33
Задание 20 № 506730

Во всех подъ­ез­дах дома оди­на­ко­вое число этажей, а на каж­дом этаже оди­на­ко­вое число квартир. При этом число эта­жей в доме боль­ше числа квар­тир на этаже, число квар­тир на этаже боль­ше числа подъездов, а число подъ­ез­дов боль­ше одного. Сколь­ко эта­жей в доме, если всего в нём 110 квартир?


Аналоги к заданию № 506730: 510316 Все


34
Задание 20 № 506731

Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, сделав ровно 6 прыжков, начиная прыгать из начала координат?


Аналоги к заданию № 506731: 508401 508421 510330 510345 Все

Решение · ·

35
Задание 20 № 506363

В кор­зи­не лежат 25 грибов: ры­жи­ки и грузди. Известно, что среди любых 11 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 16 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в корзине?


36
Задание 20 № 506729

На глобусе фломастером проведены 17 параллелей (включая экватор) и 24 меридиана. На сколько частей проведённые линии разделяют поверхность глобуса?


Аналоги к заданию № 506729: 506875 Все


37
Задание 20 № 506523

Улитка за день за­пол­за­ет вверх по де­ре­ву на 4 м, а за ночь спол­за­ет на 3 м. Вы­со­та де­ре­ва 10 м. За сколь­ко дней улит­ка впер­вые доползёт до вер­ши­ны дерева?


Аналоги к заданию № 506523: 506793 506264 510361 Все

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 166214.

38
Задание 20 № 506793

Улитка за день за­пол­за­ет вверх по де­ре­ву на 4 м, а за ночь спол­за­ет на 1 м. Вы­со­та де­ре­ва 13 м. За сколь­ко дней улит­ка впер­вые доползёт до вер­ши­ны дерева?


39
Задание 20 № 506292

Хозяин до­го­во­рил­ся с рабочими, что они вы­ко­па­ют ему ко­ло­дец на сле­ду­ю­щих условиях: за пер­вый метр он за­пла­тит им 4200 рублей, а за каж­дый сле­ду­ю­щий метр — на 1300 руб­лей больше, чем за предыдущий. Сколь­ко денег хо­зя­ин дол­жен будет за­пла­тить рабочим, если они вы­ко­па­ют ко­ло­дец глу­би­ной 11 метров?


Аналоги к заданию № 506292: 506566 506606 506586 510305 510313 510337 Все

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 120911.

40
Задание 20 № 506688

Хозяин до­го­во­рил­ся с рабочими, что они ко­па­ют ко­ло­дец на сле­ду­ю­щих условиях: за пер­вый метр он за­пла­тит им 3500 рублей, а за каж­дый сле­ду­ю­щий метр — на 1600 руб­лей больше, чем за предыдущий. Сколь­ко денег хо­зя­ин дол­жен будет за­пла­тить рабочим, если они вы­ко­па­ют ко­ло­дец глу­би­ной 9 метров?

Источник: Апро­ба­ция ба­зо­во­го ЕГЭ по ма­те­ма­ти­ке, 13—17 октября: ва­ри­ант 152743.
Решение · ·

41
Задание 20 № 510696

В кор­зи­не лежит 45 грибов: ры­жи­ки и грузди. Известно, что среди любых 23 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 24 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в корзине?


42
Задание 20 № 510716

В кор­зи­не лежит 25 грибов: ры­жи­ки и грузди. Известно, что среди любых 11 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 16 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в корзине?


43
Задание 20 № 510736

Список за­да­ний вик­то­ри­ны со­сто­ял из 25 вопросов. За каж­дый пра­виль­ный ответ уче­ник по­лу­чал 7 очков, за не­пра­виль­ный ответ с него спи­сы­ва­ли 10 очков, а при от­сут­ствии от­ве­та да­ва­ли 0 очков. Сколь­ко вер­ных от­ве­тов дал ученик, на­брав­ший 42 очка, если известно, что по край­ней мере один раз он ошибся?


Аналоги к заданию № 510736: 510756 Все

Решение · ·

44
Задание 20 № 510906

На палке от­ме­че­ны по­пе­реч­ные линии красного, жел­то­го и зе­ле­но­го цвета. Если рас­пи­лить палку по крас­ным линиям, то по­лу­чит­ся 5 кусков, если по жел­тым ― 7 кусков, а если по зе­ле­ным ― 11 кусков. Сколь­ко кус­ков получится, если рас­пи­лить палку по ли­ни­ям всех трех цветов?

Источник: Пробный эк­за­мен по базовой математике Санкт-Петербург 05.04.2016. Ва­ри­ант 1.

45
Задание 20 № 510973

Улитка за день за­пол­за­ет вверх по де­ре­ву на 2 м, а за ночь спол­за­ет на 1 м. Вы­со­та де­ре­ва 11 м. За сколь­ко дней улит­ка доползёт от ос­но­ва­ния до вер­ши­ны дерева?


46
Задание 20 № 510993

Улитка за день за­пол­за­ет вверх по де­ре­ву на 4 м, а за ночь спол­за­ет на 2 м. Вы­со­та де­ре­ва 14 м. За сколь­ко дней улит­ка доползёт от ос­но­ва­ния до вер­ши­ны дерева?


47
Задание 20 № 511016

Прямоугольник раз­бит на че­ты­ре мень­ших пря­мо­уголь­ни­ка двумя пря­мо­ли­ней­ны­ми разрезами. Пе­ри­мет­ры трёх из них, на­чи­ная с ле­во­го верх­не­го и далее по ча­со­вой стрелке, равны 24, 28 и 16. Най­ди­те пе­ри­метр четвёртого прямоугольника.


Аналоги к заданию № 511016: 512372 512597 512617 512638 512658 Все

Источник: ЕГЭ по ба­зо­вой математике 21.03.2016. До­сроч­ная волна

48
Задание 20 № 511430

В обменном пункте можно совершить одну из двух операций:

1) за 4 золотых монеты получить 5 серебряных и одну медную;

2) за 7 серебряных монет получить 5 золотых и одну медную.

У Николая были только серебряные монеты. После нескольких посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 90 медных. На сколько уменьшилось количество серебряных монет у Николая?

Источник: Пробный экзамен Саратов 2016. Вариант 1.

49
Задание 20 № 512428

Про натуральные числа A, B и С известно, что каждое из них больше 6, но меньше 10. Загадали натуральное число, затем его умножили на A, потом прибавили к полученному произведению B и вычли С. Получилось 186. Какое число было загадано?


Аналоги к заданию № 512428: 512448 512468 512682 Все


50
Задание 20 № 512508

В магазине квас на разлив можно купить в бутылках, причём стоимость кваса в бутылке складывается из стоимости самой бутылки и кваса, налитого в неё. Цена бутылки не зависит от её объёма. Бутылка кваса объёмом 1 литр стоит 36 рублей, объёмом 2 литра — 66 рублей. Сколько рублей будет стоить бутылка кваса объёмом 1,5 литра?


Аналоги к заданию № 512508: 512528 512548 512568 Все


51
Задание 20 № 512728

Клетки таблицы 6х6 раскрашены в чёрный и белый цвета так, что получилось 30 пар соседних клеток разного цвета и 16 пар соседних клеток чёрного цвета. (Клетки считаются соседними, если у них есть общая сторона.) Сколько пар соседних клеток белого цвета?


Аналоги к заданию № 512728: 512748 512768 512788 513827 513847 513867 513889 Все


52
Задание 20 № 512925

Десять столбов соединены между собой проводами так, что от каждого столба отходит ровно 4 провода. Сколько всего проводов протянуто между этими десятью столбами?


Аналоги к заданию № 512925: 512953 512973 513024 514627 Все


53
Задание 20 № 513044

Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 328, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?


Аналоги к заданию № 513044: 513094 513114 513134 Все


54
Задание 20 № 513745

Миша, Коля и Лёша играют в настольный теннис: игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что Миша сыграл 10 партий, а Коля — 21. Сколько партий сыграл Лёша?


Аналоги к заданию № 513745: 513765 513787 513807 Все


55
Задание 20 № 514399

На ленте по разные стороны от середины отмечены две тонкие поперечные полоски: синяя и красная. Если разрезать ленту по красной полоске, то одна часть будет на 30 см длиннее другой. Если разрезать ленту по синей полоске, то одна часть будет на 50 см длиннее другой. Найдите расстояние (в сантиметрах) между красной и синей полосками.


Аналоги к заданию № 514399: 514479 514499 514519 Все


Пройти тестирование по этим заданиям